AES加密详解

aes 算法
2023-02-22 16:29:10 发布

文章目录

推荐

AES加密 — 详解 RSA 加密 — 详解

AES 简介

  • DES 全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS)

  • AES 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES(Data Encryption Standard),已经被多方分析且广为全世界所使用。

为什么 DES 被废弃?

我们知道数据加密标准(Data Encryption Standard: DES)的密钥长度是56比特,因此算法的理论安全强度是2的56次方。但二十世纪中后期正是计算机飞速发展的阶段,元器件制造工艺的进步使得计算机的处理能力越来越强,DES将不能提供足够的安全性。

简单来说,DES标准的秘钥长度要求太短,安全性不够。

为什么AES算法被称为 Rijndael 算法?

1997年1月2号,美国国家标准技术研究所(National Institute of Standards and Technology: NIST)宣布希望征集高级加密标准(Advanced Encryption Standard: AES)[3],用以取代DES。AES得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6和MARS,下图分别为其中的5位作者。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael算法获胜。

为什么AES算法安全性高?

AES的区块长度固定为128位,密钥长度则可以是128 bit,192 bit 或256位 bit 。换算成字节长度,就是密码必须是 16个字节,24个字节,32个字节。AES密码的长度更长了,破解难度就增大了,所以就更安全。

对称加密

  • 对称加密 : 也就是加密秘钥和解密秘钥是一样的。

  • 非对称加密 : 也就是加密秘钥和解密秘钥是不一样的。

AES 是对称加密算法,优点:加密速度快;缺点:如果秘钥丢失,就容易解密密文,安全性相对比较差

RSA 是非对称加密算法 , 优点:安全 ;缺点:加密速度慢

AES加密需要:明文 + 密钥+ 偏移量(IV)+密码模式(算法/模式/填充) AES解密需要:密文 + 密钥+ 偏移量(IV)+密码模式(算法/模式/填充)

AES的算法模式一般为 AES/CBC/PKCS5Padding

加密模式

AES的加密模式有以下几种

  • 电码本模式(ECB)

  • 密码分组链接模式(CBC)

  • 计算器模式(CTR)

  • 密码反馈模式(CFB)

  • 输出反馈模式(OFB)

密码分组链接模式(CBC):将整段明文切成若干小段,然后每一小段与初始块或者上一段的密文段进行异或运算后,再与密钥进行加密。

电码本模式 ECB (Electronic codebook,ECB):需要加密的消息按照块密码的块大小被分为数个块,并对每个块进行独立加密。

在这里插入图片描述 根据图示,在 CBC 模式下,使用 AES 加解密方式进行分组加解密时,需要用到的两个参数

  • 1、初始化向量,也就是偏移量

  • 2、加解密秘钥

填充模式

如电子密码本(ECB)和密文块链接(CBC)。 为对称密钥加密设计的块密码工作模式要求输入明文长度必须是块长度的整数倍,因此信息必须填充至满足要求。

常见填充模式

算法/模式/填充16字节加密后数据长度不满16字节加密后长度
AES/CBC/NoPadding16不支持
AES/CBC/PKCS5Padding3216
AES/CBC/ISO10126Padding3216
AES/CFB/NoPadding16原始数据长度
AES/CFB/PKCS5Padding3216
AES/CFB/ISO10126Padding3216
AES/ECB/NoPadding16不支持
AES/ECB/PKCS5Padding3216
AES/ECB/ISO10126Padding3216
AES/OFB/NoPadding16不支持
AES/OFB/PKCS5Padding3216
AES/OFB/ISO10126Padding3216
AES/PCBC/NoPadding16不支持
AES/PCBC/PKCS5Padding3216
AES/PCBC/ISO10126Padding3216

PKCS5Padding到底是什么?

为什么 JAVA 里指定算法时,写的是 AES/CBC/PKCS5Padding,每个都是什么含义,又有什么作用。

  • AES,加解密算法

  • CBC,数据分组模式

  • PKCS5Padding,数据按照一定的大小进行分组,最后分剩下那一组,不够长度,就需要进行补齐, 也可以叫 补齐模式

简单的说:拿到一个原始数据以后,首先需要对数据进行分组,分组以后如果长度不满足分组条件,需要进行补齐,最后形成多个分组,在使用加解密算法,对这多个分组进行加解密。所以这个过程中,AES,CBC,PKCS5Padding 缺一不可。

在对数据进行加解密时,通常将数据按照固定的大小(block size)分成多个组,那么随之就产生了一个问题,如果分到最后一组,不够一个 block size 了,要怎么办?此时就需要进行补齐操作。

补齐规则:The value of each added byte is the number of bytes that are added, i.e. N bytes, each of value N are added.

举例:

36 位的 UUID,如果按照 block size=16 字节(即 128 比特),那么就需要补齐到 48 位,差 12 个字节。那么最后填充的 12 个字节的内容,都是字节表示的 0x0c(即 12)。

偏移量

偏移量 的添加一般是为了增加 AES 加密的复杂度,增加数据的安全性。一般在 AES_256 中会使用到 偏移量 ,而在 AES_128 加密中不会使用到。

字符集

AES 加密中,特别也要注意到字符集的问题。一般用到的字符集是 utf-8gbk

实际工作中的加密流程

在实际的工作中,客户端跟服务器交互一般都是字符串格式,所以一个比较好的加密流程是:

  • 加密流程 :明文通过 密钥 (有时也需要 偏移量 ),利用 AES 加密算法,然后通过 Base64 转码,最后生成加密后的字符串。

  • 解密流程 :加密后的字符串通过 密钥 (有时也需要 偏移量 ),利用 AES 解密算法,然后通过 Base64 转码,最后生成解密后的字符串。

AES 加密/解密 注意的问题

AES 加密/解密的时候,通常是用在服务端和客户端通讯的过程中,一端加密传输,另一端解密使用。虽然 AES 加密看似简单,但在使用过程过程中,仍然会出现在一端加密ok,但是另一端解密失败的情况。一旦出现 AES 解密失败,我们可以通过以下几个方面进行排查:

1. AES 加密/解密 使用相同的密钥2. 若涉及到偏移量,则AES 加密/解密 使用的偏移量要一样3. AES 加密/解密 要使用相同加密数位,如都使用`AES_256`4. AES 加密/解密 使用相同的字符集5. AES 加密/解密 使用相同的加密,填充模式,如都使用`AES/CBC/PKCS5Padding`模式6. 由于不同开发语言(如C 和 Java)及不同开发环境(如 Java 和 Android)的影响,可能相同的加解密算法在实现上出现差异,若你们注意到这个差异,就可能导致加解密出现问题123456

最后,当我们需要验证自己的 AES 解密算法是否与别人的加密方法为一套的时候。可以让加密方发你一份加密后的密文和加密前的明文,然后你用密文解密,看解密结果和加密方发你的是否一致。需要注意的是,加密方给你的明文要尽量简洁,如就 中国 二字,这样既能看出加密方和解密方的字符集是否一致,而且能避免复制粘贴等环节出现空格,回车等转义字符对验证结果的干扰。

实战

AES加解密

首先定义加密、解密工具类

import javax.crypto.Cipher;import javax.crypto.spec.IvParameterSpec;import javax.crypto.spec.SecretKeySpec;import java.io.IOException;import java.security.GeneralSecurityException;/**
 * AES加解密工具类
 */public class AES {    /**
     * AES加密
     *
     * @param key
     * @param iv
     * @throws GeneralSecurityException
     * @throws IOException
     */    public static byte[] encryptAes(byte[] data, byte[] key, byte[] iv)            throws GeneralSecurityException, IOException {        Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
        cipher.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(key, "AES"), new IvParameterSpec(iv));        return cipher.doFinal(data);    }    /**
     * AES解密
     *
     * @param key
     * @param iv
     * @return
     * @throws GeneralSecurityException
     * @throws IOException
     */    public static byte[] decryptAesToByteString(byte[] data, byte[] key, byte[] iv)            throws GeneralSecurityException, IOException {        Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
        cipher.init(Cipher.DECRYPT_MODE, new SecretKeySpec(key, "AES"), new IvParameterSpec(iv));        return cipher.doFinal(data);    }}12345678910111213141516171819202122232425262728293031323334353637383940414243

加密和解密的代码很像,唯一的不同点是,加密 Cipher.ENCRYPT_MODE , 解密用的是 Cipher.DECRYPT_MODE

下面我们写一个测试代码:

        try {            //加密密码            String key = "zhaoyanjunzhaoy1";            //偏移量            String iv = "1234567890123456";            String message = "今天是周二,我好开心";            //加密            byte[] encryResult = AES.encryptAes(message.getBytes(), key.getBytes(), iv.getBytes());            //解密            byte[] decryResult = AES.decryptAesToByteString(encryResult, key.getBytes(), iv.getBytes());            System.out.println("解密数据 = " + new String(decryResult));        } catch (IOException | GeneralSecurityException e) {
            e.printStackTrace();        }123456789101112131415161718

输出结果:

解密数据 = 今天是周二,我好开心1

可以看到数据已经正常解密了。

AES默认实现类

不带模式和填充来获取AES算法的时候,其默认使用 AES/ECB/PKCS5Padding(输入可以不是16字节,也不需要填充向量), 所以不需要偏移量参数

Cipher cipher = Cipher.getInstance("AES");1

我下面封装一个工具类

import javax.crypto.Cipher;import javax.crypto.spec.SecretKeySpec;import java.io.IOException;import java.security.GeneralSecurityException;/**
 * AES加解密工具类
 */public class AES {    /**
     * AES加密
     *
     * @param key
     * @throws GeneralSecurityException
     */    public static byte[] encryptAes(byte[] data, byte[] key) throws GeneralSecurityException {        Cipher cipher = Cipher.getInstance("AES");
        cipher.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(key, "AES"));        return cipher.doFinal(data);    }    /**
     * AES解密
     *
     * @param key
     * @return
     * @throws GeneralSecurityException
     * @throws IOException
     */    public static byte[] decryptAesToByteString(byte[] data, byte[] key)            throws GeneralSecurityException, IOException {        Cipher cipher = Cipher.getInstance("AES");
        cipher.init(Cipher.DECRYPT_MODE, new SecretKeySpec(key, "AES"));        return cipher.doFinal(data);    }}12345678910111213141516171819202122232425262728293031323334353637

测试代码

public class T2 {    public static void main(String[] args) {        try {            //加密密码            String key = "zhaoyanjunzhaoy1";            //加密正文            String message = "今天是周二,我好开心";            //加密            byte[] encryResult = AES.encryptAes(message.getBytes(), key.getBytes());            //解密            byte[] decryResult = AES.decryptAesToByteString(encryResult, key.getBytes());            System.out.println("解密数据 = " + new String(decryResult));        } catch (IOException | GeneralSecurityException e) {
            e.printStackTrace();        }    }}12345678910111213141516171819202122

测试结果

解密数据 = 今天是周二,我好开心1

AES随机加密

在上面的例子中,我们在 AES 加密中,需要指定规定长度的密码,偏移量。在 Java 中还给我们提供了 KeyGenerator 类来随机生成一个密码和偏移量,解决了我们动脑想密码的问题。

我们来看看随机加密怎么用。

 /**
     * AES加密/解密
     *
     * @throws GeneralSecurityException
     */    public void encryptAes() throws GeneralSecurityException {        //原始数据        String message = "今天是周四,好开心哦";        byte[] data = message.getBytes();        //指定加密类型        KeyGenerator keygen = KeyGenerator.getInstance("AES");        //指定秘钥长度
        keygen.init(256);        SecretKey secretKey = keygen.generateKey();        Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
        cipher.init(Cipher.ENCRYPT_MODE, secretKey);        //获取秘钥        byte[] key = secretKey.getEncoded();        //获取偏移量        byte[] iv = cipher.getIV();        //解密数据        byte[] ciphertext = cipher.doFinal(data);        //解密数据
        cipher.init(Cipher.DECRYPT_MODE, new SecretKeySpec(key, "AES"), new IvParameterSpec(iv));        byte[] decryMessage = cipher.doFinal(ciphertext);        System.out.println("解密数据 = " + new String(decryMessage));    }123456789101112131415161718192021222324252627282930313233

这种加密 key , iv 都是随机产生的,每次加密后的密文都不一样,适合一定的特殊场景。

随机是怎么发生的,我们就看

cipher.init(Cipher.ENCRYPT_MODE, secretKey);1

在 init 方法的时候,JceSecurity.RANDOM 产生随机数,源码如下:

   public final void init(int opmode, Key key) throws InvalidKeyException {        init(opmode, key, JceSecurity.RANDOM);    }123

具体细节就不看了,知道原理就行。

2023-02-22 16:35:55 更新
原文地址: http://blog.csdn.net/zhaoyanjun6/article/details/120285594
其他工具
时间戳工具
时间戳(Unixtimestamp)转换器功能如下:1、时间戳(Unixtimestamp)转换器提供当前时间的时间戳信息,包括以秒为单位的时间戳(10位)和以毫秒为单位的时间戳(13位),只需一键即可复制当前的时间戳信息;2、时间戳(Unixtimestamp)转换器提供时间戳转换北京时间服务,提供时间戳支线转换服务,户只要根据需要输入时间戳信息,就能便捷地将时间戳转换成北京时间;3、时间戳(Unixtimestamp)转换器同时还支持支持北京时间转时间戳服务,只需选择需要的日期信息,就能一键转换成时间戳信息,方便有效!时间戳是什么意思?什么是时间戳我们在工作学习的过程中,经常会需要记录一个准确的时间以防篡改,例如我们在拍摄照片时、或者在进行某些证据保存时需要对时间进行存储,这些场景对时间的准确性、唯一性都要求较高,那么是否有一种日期格式能够满足具备唯一性、准确、易读的特点呢?此时,时间戳就应运而生。简而言之,时间戳就是把格林威治时间1970年01月01日00时00分00秒作为时间基点,然后计算该日期到当前日期的总秒数,从而获得当前日期的时间戳,时间戳是一个长度为10位或者13位的整数。时间戳10位和13位的区别时间戳10位是指时间戳精确到秒,包含10位整数时间戳13位是指时间戳精确到毫秒,包含13位整数两者之间转换时,只需乘以1000或者除以1000即可转换
J
Javascript加密混淆
混淆工具介绍本工具可以混淆加密您的JS代码,让您的JS代码更难理解和被他人抄袭复制,保护您的代码成果,支持es3,es5,es2015,es2016,es2017,es2018,es2019andpartiallyes2020版本的JS。本JS混淆工具完全免费,支持粘贴JS代码或文件上传方式混淆您的代码,没有长度和文件体积限制,默认会带个小尾巴(最前面声明的一个obfucator的变量),当然您可以随意删除,不会影响程序执行。本工具采用开源组件在您的本地客户端浏览器混淆加密您的JS代码,您的JS代码不会上传到网络服务器中处理,完全在您的浏览器完成JS代码的加密混淆,您无需担心代码泄露,安全可信,请放心使用。您的JS代码由开源组件完成混淆,如果您有高频混淆需求,建议使用CLI方式自动化混淆,更加高效便捷。混淆预设方案由于本工具配置项较多,默认提供了3套预设的混淆加密方案,可根据自身情况修改配置,预设方案分别是:1、最佳混淆,性能较差(将会慢50-100%); 2、中等混淆,性能均衡(将会慢30-35%); 3、低度混淆,性能最佳(比未混淆稍慢)。由于混淆过程中会修改程序的执行逻辑以及众多变量替换等操作,会影响原程序的执行性能和增大文件体积,混淆强度和程序性能互斥,最佳混淆会让混淆效果最佳,解密和理解难度最大,但程序执行性能会受到较大影响。最低度的混淆虽然执行性能受影响最小,但混淆强度最低,相对较容易理解混淆后的程序,当然您也可以折中选择中等的混淆强度,该方案相对均衡。您也可以根据实际需要在预设的基础上调整某些配置,值得注意的是,切换预设配置可能会覆盖某些您的自定义设置,请留意配置情况。一般而言,可以无需修改设置直接使用默认的混淆预设方案即可。配置项介绍一、基础设置注意部分设置可能会破坏您的程序逻辑,请混淆后注意检查验证程序逻辑。防止格式化:可以让代码美化工具对混淆后的代码不起作用。使用eval语句:使用eval语句方式实现程序混淆。转义Unicode:将变量值转换为Unicode编码,此项会大大增加文件体积,且很容易还原回去,建议只针对小文件使用。优化代码结构:精简代码,如将多个ifelse结构换为三目运算。重命名全局变量:将全局变量重命名,可能会造成代码执行问题,请根据实际情况选择。重命名属性名:将对象属性名重新命名,可能会造成代码执行问题,请根据实际情况选择。分割变量字符串:将会以10个字符为一个单位,拆分混淆变量值的字符串。数字转表达式:将数字转换为函数表达式的写法,增加复杂度。禁止控制台调试:当控制台打开时终止程序执行,并进入死循环干扰控制台调试。禁止控制台输出:屏蔽一些控制台输出信息,如log,error,debug等方法,减少程序流程提示。二、混淆加密系数&规则混淆加密规则及系数均可以选择关闭相应功能,提高程序的执行效率,系数设置范围为0-1,值越高则混淆加密强度越高,文件体积和代码执行效率会有所下降。变量加密系数:混淆改变您的代码变量名称,值越高看起来越乱。死代码注入系数:死代码也就是花指令,指向正常的程序中注入一些没什么用的废代码,让程序更乱更加难以理解,干扰解密过程。控制流平坦化系数:改变程序的执行流程结构,模糊程序模块之间的前后关系,让程序看起来更加乱,增加程序分析难度。变量加密规则:加密改变变量的方法,base64加密后比rc4执行效率要高,当然没有rc4强度高。三、混淆高级设置高级设置中所有的设置项每项一行,使用回车分隔每一个配置项。安全域名:只允许混淆后的代码在指定的安全域名下执行(支持多个域名,子域名通配符用“.domain.com”表示),在此之外的任何域名下执行均会重定向到所设置的URL中,这样即使您的代码被复制,对方也无法使用,强烈建议设置此项!强制转换的字符串:强制加密编码一些比较敏感的字符串,让寻找及解密难度增大。保留的变量标识符:需要保留的不希望被混淆的一些变量标识符。保留的字符串:需要保留的不希望倍混淆的一些字符串。为何要混淆代码?混淆代码是为了保护您的代码成果,通常有以下几种情形:1、避免让他人通过代码读懂您的产品逻辑,造成商业机密泄露。2、防止一些白嫖党无节操的复制掠夺您的代码成果。3、为客户开发程序,在未收到尾款前用于给客户展示的演示站。4、删除代码注释等无用信息,提高代码文件的网络加载速度。此外,还有很多类似场景...其它提示使用本工具完成代码混淆后,请勿使用其它代码压缩工具(如uglifyjs等)或混淆加密工具二次处理混淆结果,否则可能会造成混淆变量被修改造成脚本无法执行或者混淆失败,也不要使用工具二次混淆,仅混淆加密一次就已经足够安全了。为了代码的完整性,建议混淆完毕后使用工具提供的一键复制或下载保存到本地。工具将会默认记住您的混淆设置,只需设置一次即可,不需要每次使用都重新设置。更多混淆加密细节请参考 JavascriptObfuscator。
微信支付宝收款码合并
工具简介在线微信支付宝收款码二合一制作工具,可以将微信收款码和支付宝收款码合并到同一个图片上方便收款,多个收款码样式可选,可以直接打印粘贴合成后的二合一收款码。本工具只是简单的将微信和支付宝的收款码合并到同一个图片上,方便自行打印粘贴后收款,不是云融合收款码,也不会对您的收款码做任何处理,请放心使用。您可以在微信和支付宝中分别保存下载收款码,使用本工具依次选择后一键完成制作,方便快捷。收款码合成的清晰度取决于您的收款码,如果您合成后收款码中的二维码比较模糊,请选择更清晰的收款码后重新生成。如何使用请分别点击选择微信收款码和支付宝收款码,选择好喜欢的收款码样式,点击合并即可完成微信和支付宝收款码的合并预览图片->鼠标右键->另存为->即可下载收款码;手机长按保存即可。注意选择的微信或支付宝收款码,每个图片仅能有一个二维码,如有多个可能会识别失败。经营过程中请是不是检查下自身二维码,避免被不法分子替换造成收款损失。本工具不支持老保本的浏览器,请使用最新版本的浏览器使用本工具以获得更好的体验。如何获取收款码微信:我->支付->收付款->二维码收款->保存收款码支付宝:首页->收付款->二维码收款->个人收款->保存收款码